<samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
<ul id="e4iaa"></ul>
<blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>

      代寫COMP34212、代做Python/c++程序設(shè)計(jì)

      時(shí)間:2024-04-29  來源:  作者: 我要糾錯(cuò)



      COMP34212 Cognitive Robotics Angelo Cangelosi
      COMP34212: Coursework on Deep Learning and Robotics
      34212-Lab-S-Report
      Submission deadline: 18 April 2024, 18:00 (BlackBoard)
      Aim and Deliverable
      The aim of this coursework is (i) to analyse the role of the deep learning approach within the
      context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
      evaluation of deep neural networks experiments for a vision recognition task. The assignment will
      in particular address the learning outcome LO1 on the analysis of the methods and software
      technologies for robotics, and LO3 on applying different machine learning methods for intelligent
      behaviour.
      The first task is to do a brief literature review of deep learning models in robotics. You can give a
      summary discussion of various applications of DNN to different robotics domains/applications.
      Alternatively, you can focus on one robotic application, and discuss the different DNN models used
      for this application. In either case, the report should show a good understanding of the key works in
      the topic chosen.
      The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
      (MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
      analyse new training simulations. This will allow you to evaluate the role of different
      hyperparameter values and explain and interpret the general pattern of results to optimise the
      training for robotics (vision) applications. You should also contextualise your work within the state
      of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
      and applications.
      You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
      (e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
      beyond those presented in the lab.
      The deliverable to submit is a report (max 5 pages including figures/tables and references) to
      describe and discuss the training simulations done and their context within robotics research and
      applications. The report must also include on online link to the Code/Notebook within the report,
      or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
      not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
      1 https://robotology.github.io/iCubWorld/
      2 https://rgbd-dataset.cs.washington.edu/index.html
      COMP34212 Cognitive Robotics Angelo Cangelosi
      your own simulation setup and results, not of generic CNN simulations. And demonstrate a
      credible, personalised analysis of the literature backed by cited references.
      Marking Criteria (out of 30)
      1. Contextualisation and state of the art in robotics and deep learning, with proper use of
      citations backing your academic brief review and statements (marks given for
      clarity/completeness of the overview of the state of the art, with spectrum of deep learning
      methods considered in robotics; credible personalised critical analysis of the deep learning
      role in robotics; quality and use of the references cited) [10]
      2. A clear introductory to the DNN classification problem and the methodology used, with
      explanation and justification of the dataset, the network topology and the hyperparameters
      chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
      3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
      and appropriateness of the network topology; hyperparameter exploration approach; data
      processing and coding requirements) [4]
      4. Description, interpretation, and assessment of the results on the hyperparameter testing
      simulations; include appropriate figures and tables to support the results; depth of the
      interpretation and assessment of the quality of the results (the text must clearly and
      credibly explain the data in the charts/tables); Discussion of alternative/future simulations
      to complement the results obtained) [13]
      5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
      code/notebook (link to external repository or as appendix) is not included.
      Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

      請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















       

      標(biāo)簽:

      掃一掃在手機(jī)打開當(dāng)前頁
    • 上一篇:ENGI 1331代做、代寫R程序語言
    • 下一篇:代做FINM7008、代寫FINM7008 Applied Investments
    • 無相關(guān)信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
      昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
      昆明旅游索道攻略
      昆明旅游索道攻略
    • 幣安app官網(wǎng)下載 幣安app官網(wǎng)下載

      關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2023 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
      ICP備06013414號(hào)-3 公安備 42010502001045

      主站蜘蛛池模板: 亚洲一区二区三区无码中文字幕| 成年轻人电影www无码| 亚洲日产无码中文字幕| 少妇人妻无码精品视频app| 人妻精品久久无码专区精东影业| 6080YYY午夜理论片中无码| 蕾丝av无码专区在线观看| 无码中文字幕日韩专区| 亚洲?v无码国产在丝袜线观看 | 久久精品中文字幕无码绿巨人| 97无码免费人妻超级碰碰碰碰 | av潮喷大喷水系列无码| HEYZO无码综合国产精品227| 精品无码一区在线观看| 熟妇人妻中文av无码| 无码AⅤ精品一区二区三区| 伊人久久精品无码麻豆一区| 无码日韩精品一区二区免费暖暖| 国产亚洲精品无码专区| 亚洲AV无码乱码在线观看牲色| 亚洲中文无码mv| 无码精品尤物一区二区三区| 久久久久亚洲AV成人无码| 日韩人妻无码精品系列| 日韩精品无码成人专区| 亚洲人成人伊人成综合网无码| 无码GOGO大胆啪啪艺术| 无码超乳爆乳中文字幕久久| 无码视频在线观看| 亚洲乱亚洲乱妇无码麻豆| 国产亚洲3p无码一区二区| 久久亚洲AV无码西西人体| 一级片无码中文字幕乱伦| 亚洲成a人无码av波多野按摩| 日韩av无码成人无码免费| 无码人妻精品内射一二三AV| 亚洲av专区无码观看精品天堂| 亚洲日韩乱码中文无码蜜桃臀| 亚洲熟妇无码久久精品| 无码h黄肉3d动漫在线观看| 无码毛片一区二区三区视频免费播放 |