<samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
<ul id="e4iaa"></ul>
<blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>

      ENGI 1331代做、代寫R程序語言

      時間:2024-04-28  來源:  作者: 我要糾錯



      ENGI 1331: Project 3 - Problem 3 Sample Calculations
      1
      Given:
      A simply supported beam of length L subject to a force F. The deflection of
      the beam y is characterized by the deflection equation

      where I is the moment of inertia of the cross section, R is the reaction force on the beam at the left end, 𝜃 is the
      clockwise rotational angle of the beam at the left end, and E is the Young’s modulus of the beam’s material. I, R,
      𝜃 and E are all geometry- or material-based constants. E is found in a table (MaterialElasticity.mat), and the
      other values are found with the following (already derived) equations
      Since all the properties are either given or can be directly calculated, to find deflection at a point simply find the
      coefficients I, R, 𝜃 and E and then plug them into Equation 1.
      Case 1: Single force
      For the beam shown with width w = 0.2 [m], height h = 0.2 [m], and modulus
      E = 190 * 10^9 [Pa], calculate the beam deflection at x = 2 [m] and x = 5 [m].
      First, calculate the constants:
      (2𝐿 − 𝑎)(𝐿 − 𝑎) =
      (500)(3)
      6(190∗109)(1.33∗10−4)(10)
      (17)(7) = 1.682 ∗ 10−5
      [rad]
      For 𝑥 = 2 (𝑥 ≤ 𝑎), use the first half of Eq. 1:
      𝑦(2) = −𝜃(2) +
      𝑅(2
      3)
      6𝐸𝐼
      = −(1.682 ∗ 10−5
      )(2) +
      (350)(2
      3)
      6(190∗109)(1.33∗10−4)
      → −1.517 ∗ 10−5
      [m] 𝑜𝑟 ~0.015 [mm]
      For 𝑥 = 5 (𝑥 > 𝑎), use the second half of Eq. 1:
      𝑦(2) = −𝜃(5) +
      𝑅(5
      3
      )
      6𝐸𝐼

      𝐹
      6𝐸𝐼
      (𝑥 − 𝑎)
      3 = −(1.682 ∗ 10−5
      )(5) +
      (350)(5
      3
      )
      6(190∗109)(1.33∗10−4)

      500
      6(190∗109)(1.33∗10−4)
      (2)
      3 →
      −1.781 ∗ 10−4
      [m] 𝑜𝑟 ~0.18 [mm]
      This application can be generalized with x as a vector instead of a single value to find the deflection at all points
      on the beam.
      =3 [m]
      =500 [N]
      =10 [m]
      ENGI 1331: Project 3 - Problem 3 Sample Calculations
      2
      Case 2: Multiple forces
      Similar case, but with more than one force. Simply treat the problem as
      two instances of Case 1. Calculate the deflection caused by force F at
      distance a, then calculate the deflection caused by force F2 at distance a2.
      The sum of those deflections will be the total deflection across the beam.

      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

       

       

      標簽:

      掃一掃在手機打開當前頁
    • 上一篇:CSC1002代做、Python設計程序代寫
    • 下一篇:代寫COMP34212、代做Python/c++程序設計
    • 無相關信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風景名勝區
      昆明西山國家級風景名勝區
      昆明旅游索道攻略
      昆明旅游索道攻略
    • 幣安app官網下載 幣安app官網下載

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2023 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      主站蜘蛛池模板: 色综合久久久无码中文字幕| 国产高新无码在线观看| 18禁超污无遮挡无码免费网站| 久久久无码一区二区三区| 亚洲AV无码一区二区三区在线| 日韩精品无码一区二区三区| 亚洲国产成人精品无码一区二区 | 中国无码人妻丰满熟妇啪啪软件| 久久AV无码精品人妻出轨| 亚洲中文字幕无码专区| 91精品久久久久久无码| 久久亚洲AV无码西西人体| 亚无码乱人伦一区二区| 亚洲2022国产成人精品无码区| 久久精品无码一区二区三区不卡| 国产精品无码成人午夜电影| 国模无码视频一区二区三区| 人妻无码一区二区三区AV| 久久99久久无码毛片一区二区| 无码人妻精品中文字幕免费东京热 | 亚洲情XO亚洲色XO无码| 国产精品久久久久无码av| 亚洲日韩激情无码一区| 无码毛片一区二区三区中文字幕| 久久亚洲AV成人无码国产| 亚洲精品无码久久久久sm| 国产一区二区三区无码免费| 亚洲成a∨人片在无码2023| 日韩av无码久久精品免费| 国产av无码专区亚洲av果冻传媒| 日韩av片无码一区二区不卡电影| 久久久无码精品亚洲日韩蜜桃| 惠民福利中文字幕人妻无码乱精品 | 日韩少妇无码喷潮系列一二三 | 国产午夜无码精品免费看动漫| 日韩中文无码有码免费视频| 亚洲色在线无码国产精品不卡| 秋霞无码一区二区| 男人的天堂无码动漫AV| 蜜芽亚洲av无码精品色午夜| 亚洲AV区无码字幕中文色|