精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕

代做COCMP5328、代寫Python設計程序

時間:2024-05-07  來源:  作者: 我要糾錯



COCMP5328 - Advanced Machine Learning 
Assignment 1 
This assignment is to be completed in groups of 2 to 3 students. It is worth 25% of your 
total mark. 
1 Objective 
The objective of this assignment is to implement Non-negative Matrix Factorization 
(NMF) algorithms and analyze the robustness of NMF algorithms when the dataset is 
contaminated by large magnitude noise or corruption. More specifically, you should 
implement at least two NMF algorithms and compare their robustness. 
2 Instructions 
2.1 Dataset description 
In this assignment, you need to apply NMF algorithms on two real-world face image 
datasets: (1) ORL dataset
1; (2) Extended YaleB dataset
2

• ORL dataset: it contains 400 images of 40 distinct subjects (i.e., 10 images per 
subject). For some subjects, the images were taken at different times, varying the 
lighting, facial expressions, and facial details (glasses / no glasses). All the images 
were taken against a dark homogeneous background with the subjects in an 
upright, frontal position. All images are cropped and resized to 92×112 pixels. 
• Extended YaleB dataset: it contains 2414 images of 38 subjects under 9 poses 
and 64 illumination conditions. All images are manually aligned, cropped, and 
then resized to 168×192 pixels. 
 
     1    https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html    
2    http://vision.ucsd.edu/    iskwak/ExtYaleDatabase/ExtYaleB.html    2    
Figure 1: An example face image and its occluded versions by b × b-blocks with b = 
10,12, and 14 pixels. 
Note: we provide a tutorial for this assignment, which contains example code for 
loading a dataset to numpy array. Please find more details in assignment1.ipynb. 
2.2 Assignment tasks 
1. You need to implement at least two Non-negative Matrix Factorization (NMF) 
algorithms: 
• You should implement at least two NMF algorithms with at least one not 
taught in this course (e.g., L1-Norm Based NMF, Hypersurface Cost Based 
NMF, L1-Norm Regularized Robust NMF, and L2,1-Norm Based NMF). 
• For each algorithm, you need to describe the definition of cost function as 
well as the optimization methods used in your implementation. 
2. You need to analyze the robustness of each algorithm on two datasets: 
• You are allowed to design your own data pre-processing method (if 
necessary). 
• You need to use a block-occlusion noise similar to those shown in Figure 1. 
The noise is generated by setting the pixel values to be 255 in the block. You 
should design your own value for b (not necessary to be 10,12 or 14). You 
are also encouraged to design your own noise other than the block-occlusion 
noise. 
• You need to demonstrate each type of noise used in your experiment (show 
the original image as well as the image contaminated by noise). 
• You should carefully choose the NMF algorithms and design experiment 
settings to clearly show the different robustness of the algorithms you have 
implemented. 
3. You are only allowed to use the python standard library, numpy and scipy (if 
necessary) to implement NMF algorithms. 3    
2.3 Programming and External Libraries Python
This assignment is required to be finished by 3. When you implement NMF 
algorithms, you are not allowed to use external libraries which contains NMF 
implementations, such as scikit-learn, and Nimfa (i.e., you have to implement the NMF 
algorithms by yourself). You are allowed to use scikit-learn for evaluation only (please 
find more details in assignment1.ipynb). If you have any ambiguity whether you can 
use a particular library or a function, please post on canvas under the Assignment 1 
thread. 
2.4 Evaluate metrics 
To compare the performance and robustness of different NMF algorithms, we provide 
three evaluation metrics: (1) Root Means Square Errors; (2) Average Accuracy; (3) 
Normalized Mutual Information. For all experiments, you need to use at least two 
metrics, i.e., Root Means Square Errors and Average Accuracy. 
• Root Means Square Errors (RMSE): let X denote the contaminated dataset (by 
adding noise), and      ̂ denote the clean dataset. Let   and   denote the 
factorization results on      ̂ , the Root Means Square Errors then can be defined 
as follows: 
(1) 
• Average Accuracy: You need to perform some clustering algorithms (i.e., Kmeans)
with num clusters equal to num classes. Each example is assigned with 
the cluster label (please find more details in assignment1.ipynb). Lastly, you can 
evaluate the accuracy of predictions Ypred as follows: 
 (3) 
where I(·,·) is mutual information and H(·) is entropy. 
Note: we expect you to have a rigorous performance evaluation. To provide an estimate 
of the performance of the algorithms in the report, you can repeat multiple times (e.g., 
5 times) for each experiment by randomly sampling 90% data from the whole dataset 
and average the metrics on different subset. You are also required to report the standard 
deviations. 4    
3 Report 
The report should be organized like research papers, and should contain the following 
sections: 
• In abstract, you should briefly introduce the topic of this assignment and describe 
the organization of your report. 
• In introduction, you should first introduce the main idea of NMF as well as its 
applications. You should then give an overview of the methods you want to use. 
• In related work, you are expected to review the main idea of related NMF 
algorithms (including their advantages and disadvantages). 
• In methods, you should describe the details of your method (including the 
definition of cost functions as well as optimization steps). You should also 
describe your choices of noise and you are encouraged to explain the robustness 
of each algorithm from theoretical view. 
• In experiment, firstly, you should introduce the experimental setup (e.g., datasets, 
algorithms, and noise used in your experiment for comparison). 
Second, you should show the experimental results and give some comments. 
• In conclusion, you should summarize your results and discuss your insights for 
future work. 
• In reference, you should list all references cited in your report and formatted all 
references in a consistent way. 
The layout of the report: 
• Font: Times New Roman; Title: font size 14; Body: font size 12 
• Length: Ideally 10 to 15 pages - maximum 20 pages 
Note: You are encouraged to use LaTeX. Optionally, a MS-Word template is provided. 
4 Submissions 
The submission contains two parts: source code and report. Detailed instructions are 
as follows: 
1. Go to Canvas and upload the following files. 5    
1. report (a pdf file): the report should include each member’s details 
(student id and name). 
2. code (a folder) as zip file 
i. algorithm (a sub-folder): your code could be multiple files inside 
algorithm sub-folder. 
ii. data (an empty sub-folder): although two datasets should be inside the 
data folder, please do not include them in the zip file. We will copy two 
datasets to the data folder when we test the code. 
2. Only one student needs to submit the report as pdf file and code as zip file which 
must be named as student ID numbers of all group members separated by 
underscores. 
E.g., “xxxxx_xxxxx_xxxxx_code.zip and xxxxx_xxxxx_xxxxx_report.pdf”. 
3. Your submission should include the report and the code. A plagiarism checker 
will be used. 
4. You need to clearly provide instructions on how to run your code in the appendix 
of the report. 
5. Indicate the contribution of each group member. 
6. A penalty of minus 1.25 (5%) marks per each day after due (email late 
submissions to TA and confirm late submission dates with TA). Maximum delay 
is 5 days, Assignments more than 5 days late will get 0. 
 
5 Plagiarism 
• Please read the University Policy on Academic Honesty carefully: 
http://sydney.edu.au/elearning/student/EI/academic_honesty.shtml 
• All cases of academic dishonesty and plagiarism will be investigated. 
• There is a new process and a centralised University system and database. 
• Three types of offences: 
1. Plagiarism – When you copy from another student, website or other 
source. This includes copying the whole assignment or only a part of it. 
2. Academic Dishonesty – When you make your work available to another 
student to copy (the whole assignment or a part of it). There are other 
examples of academic dishonesty. 6    
3. Misconduct - When you engage another person to complete your 
assignment (or a part of it), for payment or not. This is a very serious 
matter, and the Policy requires that your case is forwarded to the 
University Registrar for investigation. 
• The penalties are severe and include: 
1. A permanent record of academic dishonesty, plagiarism, and misconduct 
in the University database and on your student file. 
2. Mark deduction, ranging from 0 for the assignment to Fail for the course. 
3. Expulsion from the University and cancelling of your student visa. 
• When there is copying between students, note that both students are penalised – 
the student who copies and the student who makes his/her work available for 
copying. 
• It is noted that only 30% (including references) is acceptable. The high 
plagiarism will be reported to the school. 
 
 7    
6 Marking scheme 
Category Criterion Marks Comments 
Report [20] Abstract [0.75] 
•Problem, methods, organization. 
Introduction [1.25] 
•What is the problem you intend to solve? 
•Why is this problem important? 
Previous work [1.5] 
•Previous relevant methods used in literature? 
Methods [6.25] 
•Pre-processing (if any) •NMF 
Algorithm’s formulation. 
•Noise choice and description. 
Experiments and Discussions [6.25] 
•Experiments, comparisons, and evaluation 
•Extensive analysis and discussion of results 
•Relevant personal reflection 
Conclusions and Future work [0.75] 
•Meaningful conclusions based on results 
•Meaningful future work suggested 
Presentation [1.25] 
•Grammatical sentences, no spelling mistakes 
•Good structure and layout, consistent 
formatting 
•Appropriate citation and referencing 
•Use graphs and tables to summarize data 
Other [2] 
•At the discretion of the marker: for impressing 
the marker, excelling expectation, etc. 
Examples include clear presentation, welldesigned
experiment, fast code, etc. 
 8    
Code [5] 
•Code runs within a feasible time 
•Well organized, commented and documented 
 
Penalties [−] 
•Badly written code: [−5] 
•Not including instructions on how to run your 
code: [−5] 
 
Note: Marks for each category is indicated in square brackets. The minimum mark for the assignment will be 0 (zero). 

請加QQ:99515681  郵箱:[email protected]   WX:codinghelp























 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP4403、代做Java編程語言
  • 下一篇:COMP1212代寫、代做Java/c++程序設計
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • 短信驗證碼平臺 理財 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    精品深夜AV无码一区二区_伊人久久无码中文字幕_午夜无码伦费影视在线观看_伊人久久无码精品中文字幕
    <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
    <ul id="e4iaa"></ul>
    <blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>
      国产日韩一级二级三级| 亚洲va欧美va人人爽午夜| 在线影视一区二区三区| 97国产一区二区| 久久久精品中文字幕麻豆发布| 中文字幕欧美激情| 不卡的av网站| 一区二区在线观看视频| 黄页视频在线91| 久久婷婷成人综合色| 一区二区三区中文在线| 国产综合久久久久久鬼色| 北岛玲一区二区三区四区| 国产米奇在线777精品观看| 91网站黄www| 夜夜精品视频一区二区 | 亚洲乱码国产乱码精品精可以看 | 欧美精品一级二级| 日韩avvvv在线播放| 91在线精品一区二区| 91精品国产色综合久久不卡电影 | 国产农村妇女毛片精品久久麻豆| 国产精品你懂的| 石原莉奈在线亚洲三区| 91视频www| 亚洲成av人**亚洲成av**| 成人毛片视频在线观看| 欧美一区二区视频在线观看2022| 中文字幕精品三区| 欧洲日韩一区二区三区| 中文字幕亚洲一区二区av在线| 亚洲在线视频网站| 日韩一级欧美一级| 99久久久国产精品免费蜜臀| 26uuu精品一区二区| 亚洲成人免费视频| 久久久不卡网国产精品二区| 久久99国产精品免费| 欧美一区二区精品在线| 亚洲国产日韩精品| 国产欧美日韩在线看| 韩国毛片一区二区三区| 欧美久久免费观看| jlzzjlzz亚洲女人18| 国产精品理论片| 欧美一级艳片视频免费观看| 天堂成人国产精品一区| 欧美亚洲一区二区在线观看| 亚洲丝袜美腿综合| 2022国产精品视频| 欧美视频中文字幕| 亚洲成av人片在线| 国产精品久久久久久久久晋中 | 欧美性受极品xxxx喷水| 一区二区三区四区五区视频在线观看| 国产自产视频一区二区三区| 欧美一区二区三区在线| 麻豆久久久久久久| 夜夜精品浪潮av一区二区三区| 色一情一伦一子一伦一区| 亚洲欧美另类久久久精品| 91在线码无精品| 国产精品夜夜嗨| 国产精品免费看片| 国产日产欧美一区二区视频| www.日韩大片| 国产精品亚洲成人| 国内外成人在线| 黄网站免费久久| 激情亚洲综合在线| 国产在线精品一区二区夜色 | 国产校园另类小说区| 大尺度一区二区| 国产精品夜夜嗨| 国产黄色91视频| 韩国一区二区视频| 国产在线精品一区二区夜色| 综合网在线视频| 国产精品视频在线看| 91蜜桃传媒精品久久久一区二区| 国产午夜精品美女毛片视频| 成人av先锋影音| 99在线精品视频| 91麻豆文化传媒在线观看| 久久er精品视频| 国产综合色在线视频区| 夜夜亚洲天天久久| 亚洲成人动漫一区| 日本 国产 欧美色综合| 亚洲欧美国产三级| 亚洲一区二区av在线| 国产午夜精品一区二区三区视频| 91久久精品一区二区| 极品少妇xxxx精品少妇偷拍| 亚洲精品国产无天堂网2021| 92国产精品观看| 亚洲欧洲在线观看av| 欧美一卡在线观看| 欧美tickling网站挠脚心| 色欲综合视频天天天| 国产成人自拍网| 丁香婷婷综合网| 欧美性videosxxxxx| av一区二区三区在线| 激情综合网av| 春色校园综合激情亚洲| 久久成人精品无人区| 午夜精品123| 国产一区在线不卡| 一本大道久久a久久综合婷婷| 国产福利91精品一区二区三区| 一区二区三区四区国产精品| 欧美在线观看视频一区二区| 丁香桃色午夜亚洲一区二区三区| 日韩黄色免费网站| 国产成人免费视频精品含羞草妖精 | 91精品久久久久久久久99蜜臂| 色天使色偷偷av一区二区| av一区二区三区| 精品人伦一区二区色婷婷| 91麻豆精品国产91久久久久久久久| 色综合久久中文字幕| 色婷婷精品大视频在线蜜桃视频| 成人免费高清视频在线观看| 国产一区二区在线观看免费| **性色生活片久久毛片| 亚洲欧美国产高清| 国产不卡视频一区二区三区| 国产福利一区二区三区| 高清av一区二区| 精品国产一区二区三区忘忧草 | 亚洲一区二区三区爽爽爽爽爽| 亚洲品质自拍视频| 国产一区日韩二区欧美三区| 国产suv精品一区二区883| 成人福利在线看| 26uuu欧美日本| 捆绑紧缚一区二区三区视频| 国产精品一区二区在线播放| 成人app网站| 欧美国产成人精品| 成人免费高清在线观看| 欧美日韩免费一区二区三区| 欧美一区二区高清| 午夜精品一区二区三区三上悠亚| 精品一区免费av| 日韩精品一区二区三区视频播放| 久久精品一区二区| 狠狠色综合播放一区二区| 91香蕉视频污在线| 亚洲色图制服诱惑 | 国产欧美视频在线观看| 亚洲欧美偷拍三级| 99r国产精品| 精品国产电影一区二区| 一区在线观看视频| 99精品欧美一区二区三区小说| 欧美美女一区二区在线观看| 久久精品人人做人人综合| 亚洲一区二区视频在线| 国产另类ts人妖一区二区| 欧洲一区二区av| 午夜视黄欧洲亚洲| 日韩欧美一级在线播放| 亚洲最新视频在线播放| 国产综合色产在线精品| 精品视频在线免费| 免费观看成人av| 久久精品水蜜桃av综合天堂| 日本强好片久久久久久aaa| 99在线视频精品| 一个色妞综合视频在线观看| 成人午夜激情视频| 亚洲一区二区三区四区在线观看 | 午夜电影网一区| 色综合 综合色| 日韩高清不卡一区二区三区| 日本电影欧美片| 日韩电影在线看| 中文在线一区二区| 欧美一卡二卡三卡| 91亚洲精品乱码久久久久久蜜桃| 久久久精品一品道一区| 人人超碰91尤物精品国产| 欧美三级一区二区| 一区二区三区**美女毛片| 99精品视频在线播放观看| 国产亚洲一区二区三区在线观看| 全国精品久久少妇| 亚洲视频在线观看一区| www.在线成人| 免费观看一级欧美片| 日韩欧美电影一区| 一本色道a无线码一区v| 亚洲精品免费电影| 久久亚洲一级片| 欧美精品亚洲一区二区在线播放| 亚洲国产成人av网| 中文字幕+乱码+中文字幕一区| 成人免费高清视频在线观看|