<samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
<ul id="e4iaa"></ul>
<blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>

      代寫AIML 2023-2024 Coursework

      時間:2024-03-17  來源:  作者: 我要糾錯


      AIML 2023-2024 Coursework
      March 12, 2024
        Figure 1: Convolutional neural network for coursework assignment.
      Problem The goal of this take-home assignment is to implement, in Python, a simple two-layer convolutional neural network (CNN) with five inputs x1, . . . , x5, four hidden nodes z1, . . . , z4 and one output y with ReLU activations, according to the diagram shown in Figure 1. The hidden layer and output of the CNN is to be computed along with the gradient of the hidden layer and output with respect to parameter w1. The values oftheparameterswillbew1 =1.2,w2 =−0.2,v1 =−0.3,v2 =0.6,v3 =1.3andv4 =−1.5.
      Instructions The CNN implementation is to be computed using a single Python function in single Python file. The interface to the function should be in the precise format,
      y, z = convnet(x) (1)
      where x = [x1, x2, x3, x4, x5] is a list of five numerical inputs (for example, a set of real numbers x=[0.3,−1.5,0.7,2.1,0.1]), and it should return the value of y as a number of the type dual and, z=[z1,z2,z3,z4] as a list of four numbers of type dual defined in the course code module ad.py. Therefore, when testing, you should expect to import this module. The implementation should use the specific values of the weight parameters given above.
      Submission TopreparethePythoncodefileforsubmission,itmustbenamedintheformatinitials_studentid.py, for instance if your initials are ’AJD’ and your ID is 5716631 then your file should be named ajd_5716631.py. Submit the file through the Assignments page on Canvas. The deadline for submissions is 12pm UK time, 21st March 2024.
      Marking The function will be marked automatically by calling it inside Python, and checking the results against a model solution. A fully correct solution will receive 20 marks. A solution which has a partially correct
      請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

      標簽:

      掃一掃在手機打開當前頁
    • 上一篇:代寫COMP3411/9814 Bridge Puzzle編程代做
    • 下一篇:COMP2207 代做、R 程序設計代寫
    • 無相關信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風景名勝區(qū)
      昆明西山國家級風景名勝區(qū)
      昆明旅游索道攻略
      昆明旅游索道攻略
    • 幣安app官網(wǎng)下載 幣安app官網(wǎng)下載

      關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2023 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權所有
      ICP備06013414號-3 公安備 42010502001045

      主站蜘蛛池模板: 在线a亚洲v天堂网2019无码 | 亚洲AV永久无码精品水牛影视| 无码人妻久久一区二区三区免费丨| 人妻丰满?V无码久久不卡 | 国产精品无码免费专区午夜| 中文字幕无码亚洲欧洲日韩| 无码人妻精品一区二区三区99仓本 | 蜜桃无码AV一区二区| 高h纯肉无码视频在线观看| 无码少妇丰满熟妇一区二区| 亚洲av永久无码精品表情包| 精品久久久无码人妻字幂| 性色av无码不卡中文字幕| 妖精色AV无码国产在线看| 日韩av无码中文字幕| 中文无码精品A∨在线观看不卡| 精品一区二区三区无码免费直播| 日韩免费人妻AV无码专区蜜桃| 亚洲中文字幕无码专区| 精品人妻无码一区二区三区蜜桃一| 精品少妇人妻AV无码专区不卡| 久久久久亚洲精品无码系列| 精品无码av一区二区三区| 东京热av人妻无码专区| 国模吧无码一区二区三区| 男人的天堂无码动漫AV| 久久无码专区国产精品s| 国产办公室秘书无码精品99| 亚洲国产a∨无码中文777 | 中文字幕无码免费久久9一区9 | 无码中文字幕乱在线观看| 国产羞羞的视频在线观看 国产一级无码视频在线 | 亚洲日韩精品无码专区加勒比☆| 无码夫の前で人妻を犯す中字| 亚洲AV永久无码精品一百度影院 | 无码囯产精品一区二区免费 | 中文无码字幕中文有码字幕| 无码任你躁久久久久久老妇App| 亚洲日韩乱码中文无码蜜桃| 久久久久亚洲AV无码专区首JN| 亚洲中文无码a∨在线观看|