<samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
<ul id="e4iaa"></ul>
<blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>

      COMP3217代做、Python/Java編程設計代寫

      時間:2024-02-28  來源:  作者: 我要糾錯



      COMP3217 University of Southampton
      Assignment 1: Trusted Computing
      Set: 16/02/2024, Due: 22/03/2024
      The assignment at hand is concerned with secure boot and trusted platform modules (TPM), and
      draws upon the content covered in the lectures and previous labs. This is an individual assignment
      that carries a weightage of 50% towards the overall module grade. You will be assessed on your
      ability to demonstrate your understanding of trusted computing and benefits of applying trusted
      computing to today’s computing platforms.
      Marks Breakdown
      50 Mark For all tasks. Which is broken down into:
      5 Mark: For clarity of your description.
      15 Mark: For Part-1 (breakdown below)
      15 Mark: For Part-2 (breakdown below)
      15 Mark: For Part-3 (breakdown below)
      Submission Instructions
      Please submit a report to this link https://handin.ecs.soton.ac.uk. Your report must be submitted
      in PDF format.
      Deadline
      The assignment deadline is on 22/3/2024
      Experimental Setup
      We will be utilizing the same lab setup. While you are not required to submit any code, we highly encourage
      you to confirm the validity of your solution by employing the simulated TPM we used in the lab.
      1
      COMP3217 University of Southampton
      1 Part 1 - Trusted Platform Module (15 marks)
      A Trusted Platform Module (TPM) is a dedicated hardware component that provides secure storage and
      processing of cryptographic keys and other sensitive information. The TPM is a microcontroller that
      resides on the motherboard of a computer and interacts with the system firmware to ensure that the
      system remains in a trusted state during boot-up and operation. The TPM can be used for various security
      purposes, including secure boot, disk encryption, and digital rights management. It includes features such
      as random number generation, cryptographic functions, and secure storage of secrets. The TPM is designed
      to be tamper-resistant, so it can protect sensitive information even if an attacker gains physical access to
      the computer. This standardized technology was developed by the Trusted Computing Group (TCG) and is
      widely used in modern computers and other devices. In our lab, we used a software TPM and implemented
      remote attestation using TPM2 Quote and TPM2 PCRs.
      1. Highlight four differences between TPM1.2 and TPM2.0. What are the major difference between
      the two? (2 Marks)
      2. Can you explain the difference between the Endorsement Hierarchy and the Storage Hierarchy? (2
      Marks)
      3. Can you give an example of how to generate a key that is exclusively intended for encryption and
      cannot be utilized for signing? (2 Marks)
      4. In a virtualized environment, TPM 2.0 can be used by multiple users. How does TPM 2.0 maintain
      isolation between these users? Additionally, is it possible for each user to own their respective
      hierarchies? (2 Marks)
      5. You have decided that remote attestation is an essential feature and want to utilize it on your laptop.
      (7 Marks)
      (a) Can you describe which measurements you would store within TPM Volatile PCRs, and why
      you would use those particular PCRs?
      (b) Can you describe which TPM2 Quote command you would use and what arguments you would
      include in the command?
      (c) You have received a TPM2 quote on your laptop and are using the tools you learned in the lab
      to parse and verify it. Which data from the quote would you examine and why?
      (d) To utilize remote attestation, users must implement a protocol between their device and the
      verifier. The lab notes provide a detailed explanation of this protocol. As part of this process,
      the "verifier" sends a nonce. Why is this necessary? Additionally, can you propose a method to
      ensure that this nonce is distinct from other nonces that the TPM has used within the previous
      five days?
      2 Part 2- Secure Boot (15 Marks)
      Part 1 is concerned with secure boot and methods used to implement secure boot.
      1. Can you provide a brief description of what secure boot is and explain why it is necessary? (1 Mark)
      2. If you are considering buying a laptop with secure boot enabled, it’s essential to understand the
      potential threats that it can prevent. Can you list five different types of threats, three different
      adversaries, and three types of attacks that could occur if secure boot is not implemented?(2 points)
      3. "Secure boot" is also referred to as "verified boot." Can you explain the difference between verified
      boot and measured boot? Additionally, can you explain which approach is superior and provide
      supporting reasons for your choice? (2 points)
      2
      COMP3217 University of Southampton
      4. An engineer is designing a new system and intends to implement the latest and greatest security
      measures for secure boot. The engineer is examining the hardware and software requirements necessary to create a robust secure boot solution. Additionally, the engineer has a functional requirement
      of a boot time of one second. The one second is measured from the time you power on the device
      until booting the application. The following describes the boot flow:
      bootloader1->bootloader2->middileware->OS->application
      Help the engineer by answering the following questions. (10 points)
      (a) Which cryptographic ciphers should the hardware and software support? (2 Marks)
      (b) Does the engineer require a root of trust? What is the purpose of a root of trust and why is it
      necessary? (2 Marks)
      (c) What storage requirements are necessary for a root of trust? Is the storage within the root of
      trust volatile or non-volatile? Explain your answer. (2 Marks)
      (d) How many cryptographic keys are required for the secure boot process? (2 Marks)
      (e) In the lectures, you have learned about internal root-of-trust, which is when the root of trust is
      embedded within the CPU. However, the engineer has found a CPU that suits the performance
      he is looking for, but it does not have root-of-trust or the necessary hardware to implement
      secure boot. Can you suggest some alternative options for him? (2 Marks)
      (f) Following the previous question, can you describe the steps involved in verifying the bootloader1
      starting from the moment the user presses the power on button until bootloader1 hands over
      execution to bootloader2? (2 Marks)
      3 Part 3- UEFI (15 Marks)
      UEFI stands for "Unified Extensible Firmware Interface." It is a specification for firmware that operates as a
      replacement for the traditional BIOS (Basic Input/Output System) firmware on modern computers. UEFI
      provides a layer of software between the operating system and the firmware, enabling advanced features
      such as secure boot and faster boot times. It also supports larger hard drives and partitions, as well as more
      modern technologies like touchscreens and network booting. UEFI was developed by the UEFI Forum, a
      group of industry leaders, and is widely adopted by major computer manufacturers. In the lectures, you
      have seen a Black Hat talk that explains UEFI and possible attacks on UEFI. A link to the talk is available
      on the noteswiki, and it will help you answer the following questions.
      1. Who verifies the integrity of UEFI on Intel platforms (as mentioned in the lectures)? (1 Marks)
      2. Where is UEFI normally stored on laptop devices? (2 Marks)
      3. Where are the keys used by UEFI stored and who has direct access to them? (3 Marks)
      4. Can the OS access UEFI keys location directly? why? (3 Marks)
      5. How does the UEFI specification address revocation? Can you guarantee that a specific cryptographic
      key is never used in the secure boot process? (3 Marks)
      6. If you were to attack the implementation of UEFI secure boot and you had the option to delete
      exactly one key (that is used by UEFI), which key would you choose to delete? (3 Marks)
      請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

      標簽:

      掃一掃在手機打開當前頁
    • 上一篇:代寫CS 7638: Artificial Intelligence for Robotics
    • 下一篇:代寫ENGINEERING 2125編程 Decision Making
    • 無相關信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風景名勝區
      昆明西山國家級風景名勝區
      昆明旅游索道攻略
      昆明旅游索道攻略
    • 幣安app官網下載 幣安app官網下載

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2023 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      主站蜘蛛池模板: 亚洲综合无码精品一区二区三区| 精品无码免费专区毛片| 国产AV天堂无码一区二区三区 | 亚洲色av性色在线观无码| 免费A级毛片无码A∨免费| 国产成人精品无码专区| 国产办公室秘书无码精品99| 蜜臀AV无码一区二区三区| 日韩免费人妻AV无码专区蜜桃 | 超清纯白嫩大学生无码网站| 无码少妇一区二区三区| 本免费AV无码专区一区| 无码少妇A片一区二区三区| 无码人妻精品一区二区三区99仓本| 久久久久亚洲AV无码去区首| 无码乱人伦一区二区亚洲一| 中文字幕在线无码一区二区三区| 亚洲av日韩av永久无码电影| 无码人妻丰满熟妇精品区| 中文字幕精品无码一区二区三区| 免费无码黄动漫在线观看| 西西444www无码大胆| 直接看的成人无码视频网站| 国产av永久无码天堂影院| 日韩精品无码免费专区午夜| 国产精品成人无码久久久久久| 日本精品无码一区二区三区久久久| 老子午夜精品无码| 精品日韩亚洲AV无码一区二区三区| 无码专区狠狠躁躁天天躁| 亚洲综合无码精品一区二区三区 | 久久久久琪琪去精品色无码| 曰韩精品无码一区二区三区| 久久精品?ⅴ无码中文字幕| 无码国产成人午夜电影在线观看| 日韩免费无码一区二区视频| 精品无码黑人又粗又大又长| 日韩人妻无码精品专区| 亚洲欧洲日产国码无码网站| 无码人妻精品一区二区三区66| 日韩精品久久无码人妻中文字幕|